In planta stage-specific fungal gene profiling elucidates the molecular strategies of Fusarium graminearum growing inside wheat coleoptiles.
نویسندگان
چکیده
The ascomycete Fusarium graminearum is a destructive fungal pathogen of wheat (Triticum aestivum). To better understand how this pathogen proliferates within the host plant, we tracked pathogen growth inside wheat coleoptiles and then examined pathogen gene expression inside wheat coleoptiles at 16, 40, and 64 h after inoculation (HAI) using laser capture microdissection and microarray analysis. We identified 344 genes that were preferentially expressed during invasive growth in planta. Gene expression profiles for 134 putative plant cell wall-degrading enzyme genes suggest that there was limited cell wall degradation at 16 HAI and extensive degradation at 64 HAI. Expression profiles for genes encoding reactive oxygen species (ROS)-related enzymes suggest that F. graminearum primarily scavenges extracellular ROS before a later burst of extracellular ROS is produced by F. graminearum enzymes. Expression patterns of genes involved in primary metabolic pathways suggest that F. graminearum relies on the glyoxylate cycle at an early stage of plant infection. A secondary metabolite biosynthesis gene cluster was specifically induced at 64 HAI and was required for virulence. Our results indicate that F. graminearum initiates infection of coleoptiles using covert penetration strategies and switches to overt cellular destruction of tissues at an advanced stage of infection.
منابع مشابه
Induced Acidic chitinase Expression and Scab-Resistant in Wheat Under Field Condition
Fusarium head blight (FHB) caused by Fusarium graminearum is responsible for billions of dollars in agriculture losses. The goal of the present study was evaluation the expression of acidic chitinase, one of PR proteins, in wheat defense response against different FHB induced treatments in 'Falat' as a highly susceptible and 'Sumai3' as a tolerant cultivar. These treatments contained fungi extr...
متن کاملPhylogeny and genetic diversity of Fusarium graminearum species complex associated with Fusarium head blight of wheat in Moghan plain (Iran)
Thirty-seven isolates of Fusarium graminearum species complexobtained from wheat heads with Fusarium head blight symptoms were selected and used for phylogenetic studies. They were collected from different localities of Moghan plain (Ardebil province, Iran). Partial sequences of translation elongation factor 1-alpha (TEF), putative reductase (RED) and UTP-ammonia ligase (URA) genes were amplifi...
متن کاملCHANGES IN GLUTATHIONE S-TRANSFERASE ACTIVITY AND ZEARALENONE CONTENT IN SUSCEPTIBLE AND TOLERANT WHEAT HEADS INOCULATED WITH FUSARIUM GRAMINEARUM, THE CAUSAL AGENT OF FUSARIUM HEAD SCAB
Glutathione S-transferase (GST) activity pattern was determined in tolerant (cv. Sumai#3) and susceptible (cv. Falat) wheat heads inoculated with Fusarium graminearum, the causal agent of head scab disease (FHB), during various developmental stages. GST specific activity exhibited a transient pattern in Sumai#3 reaching a maximum level at the milk stage and declining thereafter. GST level in Su...
متن کاملPriming of wheat with the green leaf volatile Z-3-hexenyl acetate enhances defense against Fusarium graminearum but boosts deoxynivalenol production.
Priming refers to a mechanism whereby plants are sensitized to respond faster and/or more strongly to future pathogen attack. Here, we demonstrate that preexposure to the green leaf volatile Z-3-hexenyl acetate (Z-3-HAC) primed wheat (Triticum aestivum) for enhanced defense against subsequent infection with the hemibiotrophic fungus Fusarium graminearum. Bioassays showed that, after priming wit...
متن کاملExtracellular peptidases of the cereal pathogen Fusarium graminearum
The plant pathogenic fungus Fusarium graminearum (Fgr) creates economic and health risks in cereals agriculture. Fgr causes head blight (or scab) of wheat and stalk rot of corn, reducing yield, degrading grain quality, and polluting downstream food products with mycotoxins. Fungal plant pathogens must secrete proteases to access nutrition and to breakdown the structural protein component of the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Plant cell
دوره 24 12 شماره
صفحات -
تاریخ انتشار 2012